coordinate of roller surface; ',change of 8 coordinate from material entrance into deformation region and
to its outlet; B, = 2 arctan (x+/d) entrance coordinate; B-, outlet coordinate; p, density; A, thermal conduc-
tivity; cy, heat capacity; T;, Ty, temperatures of roller surfaces; 2Q, material discharge; V, speed of roller
surface rotation. .
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INFLUENCE OF GRAVITATIONAL CONVECTION ON THE
PROGRESS OF A HETEROGENEOUS CATALYTIC REACTION
UNDER ISOTHERMAL CONDITIONS

K. V. Pribytkova and E. A, Shtessel’ UDC 536.25

The critical conditions for origination of natural gravitational convection during the progress
of a heterogeneous catalytic reaction are considered. The influence of developed convection
on the reaction progress under isothermal conditions is analyzed.

As is known, the macroscopic velocity of a heterogeneous catalytic reaction depends on the relationship
between the true reaction rate constant and the intensity of mass transfer [1]. The intensity of mass transfer
evidently increases in the presence of gravitational convection. This can resuit in the passage from one mode
of reaction progress to another. In other words. [if the reaction were to proceed in the diffusion domain
without natural convection and the rate of mass transfer were limited.] then the reaction rate can set the
limiting stage for sufficiently strong convection.

This paper is devoted to a clarification of the role of natural gravitational convection in the progress of
a heterogeneous catalytic reaction. However, the solution of this question requires knowledge of the condi--
tions for origination of gravitational convection due to the progress of a heterogeneous catalytic reaction.

1. Critical Conditions for Origination of Convection

Let us consider an infinite plane horizontal layer filled with fluid or gas and bounded by solid bound-
aries. The temperatures on the boundaries are identical and do not vary with time. A catalytic reaction of
the type : )

X
v, A, A, (1)

proceeds on the upper boundary of the layer, where A, is the provisional notation for the initial material, A,
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is the reaction product, v; is the stoichiometric factor, and K is the reaction rate constant at a given tem-
perature.

A constant concentration of initial material is maintained on the lower boundary. Therefore, a binary
mixture will henceforth be considered. In this case, the density should depend on the concentration of one of
the reaction components. The density of a binary mixture for a gas can be expressed as follows:

0= o , 2
1 +aa
where
14 . By — My
= Uy O e
' Po RT Wy i

If « >0, then alighter product is obtained as a result of the reaction (decomposition reaction), while « <0
corresponds to the formation of a heavy product. Since the concentration a refers to the reaction product
(1), then @ < 0 in the case under consideration. Considering a perturbation of the state for which there is no
reaction product (a = 0), the gas density can be represented in a linear approximation as

p =y (1 —fa), (3)
where '
1 / 0o\
b= (5e)s

Since the reaction on the upper boundary is considered, then convection under isothermal conditions can
originate only during the progress of a reaction with the formation of a heavy product (polymerization type
reaction). Perfectly analogous results should be obtained in examining a decomposition reaction on the lower
boundary of the layer. Taking into account that o] <1 and a < 1, the dependence (2) can be represented ap-
proximately as

p 2oy (1 —oa): )
then 8 = .

In case a reaction with a liquid phase is examined, the density must be determined by means of (3), and
the quantity 8 should be found experimentally. It should be noted that a reaction with a liquid phase will pro-
ceed with a change in volume, which involves taking account of the dependence of the characteristic size of
the domain on the degree of conversion. Hence, a reaction in a gas will henceforth be examined.

The system of equations describing the process for origination of convection in a Boussinesq approxi-
mation [2] and taking account of (4) is

— -

L nats SRR | SRR SRS
ot Po
a*‘; +0- va = Da; ®
divo = 0.

The boundary conditions are the following:

2=0;;=0;a:0;Z:h;zzo;D—zizK(l-—a). {6)
Iz

It should be noted that the assumption that the dependence of the density on the coordinates is negligible
in the diffusion equations is justified sufficiently only for small « and for the reaction proceeding in an al-
most kinetic mode. _

The stationary equilibrium conditions of the mixture under consideration are

E;: 0; _‘;ao = A_[:: . -—I:
vl .

where v = K+h/D; i is a vector directed opposite to the vector E; A is the concentration gradient, and a, is
the concentration under equilibrium conditions.
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The parameter y characterizes the ratio between the reaction rate and the diffusion rate [1], where
v > 1 corresponds to the reaction proceeding in the diffusion mode, For y « 1 the reaction proceeds in the
kinetic mode. If is easy to show that the principle of monotonicity of the perturbations [3] is satisfied for the
problem under consideration. Hence, the conditions for the origination of convection are determined from the
boundary-value problem for the stationary perturbation amplitudes (to first order):

—vp+Sc-Av+Rai=0;

ScA(v-i) = Ag; (7
divo =0
with the boundary conditions )
- . — aa
=0, v=0a=0Et=F =0, —=—1a. 8
5 3 3 ya (8)

The quantities h, po(vD/ hz), v/h are selected, respectively, as the distance, velocity, and pressure
scales. The system of equations (7)-(8) is perfectly analogous to the equations describing the process for the
origination of thermal convection if the concentration is replaced by the temperature, and the parameter v,
by the Biot number {4]. Eliminating the pressure from the first and third equations of the system (7), we ob-
tain an equation containing only the vertical component of the velocity vector vg. After substituting particular
solutions of the form

vy =w (B)expi(kx + k) a=a(f)expilkix + ky)

into these equations, we obtain the system of equations

d2 2
'Sc( —k*) w = R k2a; (9
\ gz

Py

Scdw—-L2 _ iz Qo)
with the conditions on the boundaries

=0 w= 2 _0 g0 (1)

dg

dt dg

The k; and k; in these expressions are real wave numbers characterizing the periodicity of perturbations
along the horizontal coordinates x and.y, k% =k} * k. Let us seek the solution of (9)~(10) by the Bubnov—
Galerkin method [4, 5]. It should be noted that the use of this method to find the critical Rayleigh number
vields very high accuracy when using just one basis function in the velocity approximation [4]. The error in
determining the critical Rayleigh number for a plane horizontal layer in the case of thermal convection is
~0.5%.
Let us take the function
w(E) =8(1 —§*

as the basis function satisfying the boundary conditions. Substituting this expression into (10) and integrating,
we find the form of the function a(£):

.. ScyE2(1—8)? 2S¢y . ) (13)

=C,shkE4C,chkt+ -+ [6%% (5—1)--12+4% .
=GB GARY Tt T e 0R

The constants C; and C; are found from the boundary conditions (11) and (12):
Scy ; 2(12 -~ k%) fkshk - y(chk — 1)] — 1242

’

§ =

y+Dl K (kchk - yshk) 14
C'___ 2Scy(12 + k?) (14)
“"— (y-=D&

Substituting w(£) and a(£) into (9), multiplying by w(£), and integrating with respect to £ between 0 and 1,
we obtain the formula for the critical number R:

S—R-_Y _ A . (15)
v+1 B+ 1260%(C,D + CE)
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Here
A == k(R - 2482 4- 504); B =k —12k% - 504;
D=(124-k*(ch k—1)—6kshk; E=(12-+k?%shk—6k(chk+1).

Equation (15) yields the critical Rayleigh number as a function of the wave number k and the parame-
ter v. The dependence R(k) has a minimum at k = ky for a fixed value of v. The critical Rayleigh number
Rx(7y) corresponds to this value of k,. Taking account of the above-mentioned analogy, values of the com-
plex Sy = Ry [v/(y T 1)] are obtained for different ¥ from the results presented in [4] (Table 3). It can be
seen that Sx = 1708 for kx =3.11 as y —«, This agrees with the value of the critical Rayleigh number for
thermal convection in a horizontal fluid layer bounded by solid surfaces. Indeed, as y — « (diffusion mode of
reaction progress) it follows from (6) that a,=1 (@ =0) as £= 1, i.e., the problem goes over completely into
the known problem on thermal convection. Depending on 7y, the parameter Sx varies between 1708 and 1305
(for y— 0). Therefore, as ¥ diminishes, the value of Rx grows and R« —= as v — 0. Physically, this means
that for small vy the process is limited by the reaction rate, and the concentration of the product on the reac-
tion surface tends to zero as y — 0, i.e., no difference in concentration originates due to the origination of
convection. To ~0.5% accuracy, the dependence of R* on ¥ can be described by the following approximate
formula:

R, = 1305(y - 1) 14 0,309 y ' (16)
Y v+ 3.22

2. Influence of Developed Convection on the Progress of

a Heterogeneous Chemical Reaction

As above, let us consider a plane horizontal layer of a reacting gas with the boundary conditions (6),
where R > Ry, i.e., intensive mixing occurs within the layer because of the concentration chemical convec-
tion which originates.

To clarify the influence of convection on a heterogeneous reaction, let us use the method of an equiac-
cessible surface [1] and let us introduce some mean product concentration 8 in the volume. A change in the
concentration 6 can occur only because of the difference in the mass flows through the upper and lower sur-
faces, i.e.,

do . an
dt =(j1—Ja) S
where ji =wy (24 —8); jo» =ne0; j1 and j» are the m ss flows, respectively, from the upper and to the lower

surfaces; V is the volume under consideration; s is the surface; « . denotes the concentration of the reac-
tion product on the reaction surface {z = h).

In the quasistationary approximation, the concentration on the boundary a. is determined from the con-
dition of equal mass flow and reaction rate:

(@, —0) =K, (1—a.). (18)
In the stationary case jy = j;; ®1{a . —6) =ny0. Introducing the effective coefficient of mass transfer
through a gas layer wy, we can write the following relationship between %y, »¢, anduy:
1 1
D “y "y )

The quantity »¢ depends on the convection intensity, i.e., x¢ = #o(R). Hence, it is easy to obtain the relation-
ship

R

7
a, —0=-"L-qa,.
SRR

Using (18) we obtain »¢(R) @, = K+(1 —a ), from which

K,
K, +#%[R)
¢n the other hand, the macroscopic rate of the heterogeneous reaction is expressed in the well-known form
[1]

a, =

_ _Kn® (19)
K, 4% (R)
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The influence of convection will evidently be most substantial in the diffusion range.

Let us use the method elucidated in [6] to determine the form of the function w(R). The quantity
(VD/ga)l/ 3 can be considered as some characteristic dimension of the domain not enclosed by the convection,
i.e., the quantity (v D/goz)i/ % is proportional to the magnitude of the diffusion boundary layer 6.

In other words,
h6 = CRIS,

The constant C is determined easily from the following considerations. For R = Ry, h=§,i.e., C= R}i/ 8
and 6 = h(Rx/ R)l/ 3, On the other hand, the diffusion Nusselt number Nu is determined-by the expression
Nu =#gh/D or Nu =h/5. It hence follows that

D (RS
T (R*) ‘

If it is taken into account that the diffusion Nusselt number is one for a horizontal layer, we can write

1/3
'KO = My (%) ’ (20)

where vy = D/ h is the coefficient of mass transfer for a diffusion transfer mechanism. Using (20) and in-
troducing the dimensionless macroscopic reaction rate J = W iy, let us rewrite (19} as

1/3

J= -—ﬂ%‘%ﬁﬁ— R>R,), (21)
wherein Rx is defined by (16). For R— Rx, J —y/y + 1). In the case of a purely diffusion mass transfer
mechanism, it is necessary that v > 1 (J ~1) in order that the whole process be limited by diffusion. For
v « 1, d —~v. Ordinarily, the temperature needed to accomplish the appropriate mode of reaction progress
is selected from these conditions. The inequality v > (R/ R*)i/ 3 must be satisfied to accomplish the diffusion
mode in the presence of convection. If the quantity ¥ =10 in the absence of convection can be considered suf-
ficient for the progress of the reaction in the diffusion range, then in the presence of convection y becomes
equal to the quantity (R/R, )i/ already for R ~10% Such values of the Rayleigh number can easily be realized
in tests. Thus, for example, a layer of height ~3 cm is adequate to reach the number R = 10% for the hetero-
geneous catalytic reaction of dimerization of ethylene. :

NOTATION

p, density; K1, iy, molecular weight of the initial substance and weight of the reaction product; «,
product concentration; a ,, product concentration on the boundary; T, temperature; B, coefficient of volume
expansion; v, velocity vector; t, time; z, vertical coordinate; £ dimensionless vertical coordinate; h, layer
height; g, gravitational acceleration vector; v, coefficient of kinematic viscosity; p, pressure; D, coefficient
of diffusion; Sc, Schmidt number; R = (ga/vD) h3, diffusion Rayleigh number; ki, ky, wave numbers along the
horizontal axes; %, g, coefficients of mass transfer from the boundary to the volume and from the volume to
the surrounding medium.
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